EHML 24Apr1997 ON THE LAPLACE OPERATOR PENALIZED BY MEAN CURVATURE

نویسنده

  • Evans M. Harrell
چکیده

Let h = Pd j=1 j where the j are the principal curvatures of a d-dimensional hypersurface immersed in R, and let be the corresponding Laplace{Beltrami operator. We prove that the second eigenvalue of 1 d h is strictly negative unless the surface is a sphere, in which case the second eigenvalue is zero. In particular this proves conjectures of Alikakos and Fusco. c 1997 by the authors. Reproduction of this article, in its entirety, by any means is permitted for non{commercial purposes. Work supported by N.S.F. grant DMS-9622730 Work supported by N.S.F. grant DMS-9500840 and the MSRI 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Second Eigenvalue of the Laplace Operator Penalized by Curvature

Consider the operator ?r 2 ?q(), where ?r 2 is the (positive) Laplace-Beltrami operator on a closed manifold of the topological type of the two-sphere S 2 and q is a symmetric non-negative quadratic form in the principal curvatures. Generalizing a well-known theorem of J. Hersch for the Laplace-Beltrami operator alone, it is shown in this note that the second eigenvalue 1 is uniquely maximized,...

متن کامل

$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$

Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...

متن کامل

Commutators, Eigenvalue Gaps, and Mean Curvature in the Theory of Schrödinger Operators

Commutator relations are used to investigate the spectra of Schrödinger Hamiltonians, H = −∆+ V (x) , acting on functions of a smooth, compact d-dimensional manifold M immersed in R , ν ≥ d+ 1. Here ∆ denotes the Laplace-Beltrami operator, and the real-valued potential–energy function V (x) acts by multiplication. The manifold M may be complete or it may have a boundary, in which case Dirichlet...

متن کامل

A Laplace Operator on Semi-Discrete Surfaces

This paper studies a Laplace operator on semi-discrete surfaces. A semidiscrete surface is represented by a mapping into three-dimensional Euclidean space possessing one discrete and one continuous variable. It can be seen as a limit case of a quadrilateral mesh, or as a semi-discretization of a smooth surface. Laplace operators on both smooth and discrete surfaces have been an object of intere...

متن کامل

Convergence of the cotan Formula - an Overview

The cotan formula constitutes a discretization of the Laplace-Beltrami operator on polyhedral surfaces in a Finite Element sense. In this note we give an overview over its convergence properties. The mean curvature vector, given by the Laplacian of the embedding of a surface, will serve as a case study: It will be shown that mean curvature viewed as a functional converges, whereas the correspon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997